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We compare - both analytically and numerically - two related spectral ( = two-point) 
closures for the problem of the decay of temperature fluctuations convected by 
isotropic turbulence. The methods are the test-field model (TFM) (Kraichnan 1971 ; 
Newman & Herring 1979) and the eddy-damped quasinormal Markovian (ENQNM) 
approximation (Orszag 1974; Lesieur & Schertzer 1978). We show that EDQNM may 
be regarded as a rational approximation to, and simplification of, the TFM, except 
a t  small wavenumbers, where an additional eddy-dissipative term is needed to 
produce satisfactory results for the former. We consider three available methods for 
determining the relaxation timescales : (i) comparison with experiments, (ii) 
comparison with the direct-interaction approximation (DIA) in thermal equilibrium, 
and (iii) comparison with DIA a t  very small wavenumber, where i t  is believed to 
represent the dynamics properly. Comparison with both large Reynolds number and 
wind-tunnel Reynolds numbers is presented. For the latter, we discuss the relationship 
of the present theoretical results to the experiments of Warhaft & Lumley (1978) and 
Sreenivasan et al. (1980), and to the theoretical analysis of Corrsin (1964), Kerr & 
Nelkin (1980) and Antonopolos-Domis (1981). 

1. Introduction 
This paper examines the logical basis and computability of two related spectral 

closures, as applied to the study of the decay of isotropic turbulence convecting a 
passive scalar. The procedures studied are the test-field model (TFM) (Kraichnan 
1971; Newman & Herring 1979; Larcheveque et al. 1980) and the eddy-damped 
quasinormal Markovian (EDQNM) approximation (Orszag 1970). This genre of 
closures concerns itself with the dynamics of interacting scales of motion, and hence 
may serve as a logical starting point for understanding flows that suffer rapid changes, 
a8 well as inertial- and dissipation-range phenomena. They may be shown to be fully 
realizable in the sense of satisfying all relevant Schwartz inequalities for covariances, 
as well as positivity of energy spectra. Their straightforward application to interesting 
flows requires the solution of an integro-differential equation, whose complexity a t  
first sight appears just as formidable as the full equations of motion; however, the 
theoretical equations for the energy spectra are much smoother (in space and time) 
than the latter, and this smoothness may be exploited to reduce greatly the 
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computational labour needed for solutions. Algorithms for spectral closures are thus 
(at wind-tunnel Reynolds numbers R, z 40) a factor of > lo3 faster than full 
spectrum simulations; a t  larger R, they are even more competitive. Thus, such 
methods are intermediate in computability between second-order modelling and full 
large-eddy spectral simulation. 

The spectral closures may be profitably used to obtain insight into the degree of 
universality of certain parameters of second-order modelling (such as the Rotta return 
to isotropy (Herring 1974; Schumann & Herring 1976; Cambon, Jeandel & Mathieu 
1980)). Perhaps their earliest use was to deduce the behaviour of energy dissipation 
as afunction of total energy and integral lengthscale (Rotta 1951). On the other hand, 
their direct application to real, inhomogeneous flows becomes quite complicated. 
Second-order modelling is then more attractive (if a t  all justified). Spectral closures 
(transformed into configuration space) may still be useful in gaining insight into such 
things as the structure of the turbulent-diffusion coefficient (Herring 1973). These 
coefficients appear as integrals of the spectra, weighted by turbulent timescales. Both 
of the latter are ingredients of the one-point closures (for a more complete discussion 
see Leslie 1973, chap. 15). 

Similarly, in employing large-eddy simulation (subgrid-scale modeling) methods, 
the closures may be used to deduce proper forms of sub-grid-scale eddy parameters. 
This point has been recently discussed extensively by Leslie 85 Quarini (1978), 
Basdevant, Lesieur & Sadourny (1978), and Chollet & Lesieur (1981). 

Before recording the closure equations, it is worth recalling certain general physical 
requirements that  useful spectral closures should possess beyond energy positivity 
noted earlier and Kolmogorov scaling at inertial-range wavenumbers. Given the 
instability of any laminar state, i t  is plausible to expect of such methods a tendency 
to redistribute the scales of motion in both magnitude and direction so that all degrees 
of freedom of the fluid (all scale sizes) are equally probable, consistent with the 
constraints of energy conservation. This concept can be made precise only for inviscid 
flows with truncated equations, in which case the eventual statistical state is one of 
energy equipartition (Lee 1952; Kraichnan 1958; Rose & Sulem 1978). The kinetic- 
energy spectrum E ( k ,  t )  is then given by 

E ( k ,  t )  = Ck2,  

where k is the wavenumber. Another important expected feature is that  small scales 
act on large scales primarily by draining their energy via  an eddy viscosity. At 
very small wavenumbers, the above ideas of equipartition and eddy viscosity lead us  
to expect that the decay of the energy spectrum should be given by 

Here A( t )  and V&dY are yet-to-be-determined functionals of energy E ( k ,  t ) .  Also 
(and the eddy diffusivity Keddy) may depend on k as k --> 0 through E ( k ,  t ) ;  this point 
will be discussed in more detail in $3.1. Equation (1.2) implies that the effects of small 
scales on the large cannot be totally viscous, but must input energy via a ‘ beating ’ 
interaction (the first term in (1.2)) leading primarily to  an input into large scale. As 
noted by Lesieur & Schertzer (1978), (1.2), together with the existence of an inertial 
range at large k ,  essentially determines the decay law of total energy. The same 
arguments apply to the passive scalar. T ( k ,  t ) ,  as given by (1.2), depends on E ( k ,  t )  
through A(t)  non-locally (i.e. as a functional integral). This feature, essential for 
predicting total energy decay, is not obtained by other more phenomenological 
closures such as those of Heisenberg (1948), Oboukhov (1941), Leith (1968), Howells 
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(1960) or Bell & Nelkin (1977). The reason lies in the fact that these models have 
strictly wavenumber-local interactions so that  T ( k ,  t )  --f k$[E(k, t ) ] ;  as k + O .  To our 
knowledge, only the closures of the present genre possess the non-local property and 
hence are capable of explaining adequately the laws of free turbulent decay. 

Section 2 records the equations to be studied and discusses their relation to other 
more fundamental closures - the direct-interaction approximation (DIA) (Kraich- 
nan 1959) and the Lagrangian-history direct-interaction approximation (LHDIA) 
(Kraichnan 1965). It turns out that  the present methods - especially as applied to 
the scalar problem - are free neither from arbitrary constants nor from arbitrary 
assumptions about structural forms of the triple-moment correlation times. Some of 
this arbitrariness may be eliminated by an appeal to the more fundamental theories 
such as the DIA or LHDIA. However, which of the latter is a more secure starting 
point is not clear a t  present. For this reason, we carry through numerical calculations 
for methods ‘based’ on both DIA and LHDIA. In practice, differences are small. 

Some general results of the TFM and EDQNM are described in $3, including a 
discussion of the issue of non-localness, the dependence of scalar spectra on Prandtl 
number, the evaluation of the relevant empirical constants, and the relation of the 
TFM to the EDQNM. We discuss in particular to what extent the EDQNM is an 
approximation to the TFM. Section 4 compares theory with experiment. We include 
a comparison with large-Reynolds-number data as well as a moderate- and small-R, 
comparison of the recent scalar-decay experiments of Warhaft & Lumley (1978) and 
Sreenivasan et al. (1980). 

2. Theory 
2.1. The eddy-damped quasinormal Murkovian (EDQNM)  model 

We consider homogeneous and isotropic decaying turbulence convecting a passive 
scalar. The kinetic-energy spectrum E(k ,  t )  and temperature-variance spectrum 
F ( k ,  t )  are defined as is customary, so that 

+(v2) = jom dlc E ( k ,  t ) ,  

( V 2 )  = dk F ( k ,  t ) ,  
0 

where v and 8’ are fluctuations from the ensemble mean in the velocity vector and 
scalar field respectively. E(k,  t )  and F ( k ,  t )  are related to the one-dimensional spectra 

so that 
(v2) = 6 jOm dp +,(p) and (0‘2) = 2 jOm dP #e(P). 

It is perhaps easiest to explain the closures by stating first the quasinormal 
approximation and then the changes needed to produce the TFM and EDQNM 
approximation, together with the physical interpretation and ameliorating effects of 
these changes. The QN approximation for homogeneous isotropic turbulence of 
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energy spectral density E ( k ,  t )  convecting a passive scalar field of spectral variance 
F ( k ,  t )  may be written as (Monin 8: Yaglom, 1975, pp. 275, 287) 

( : + 2 ~ k ~ ) E ( k , t )  = JAY ( x y + z 3 ) E ( q , t )  [k2E(p , t )D; , , -p2E(k ,  t ) D g k p ] ,  (2.5) 

where the triad relaxation times DE,, and D&,, are 

6(k+p) U ( k ,  t ,  t ’ )  E (u(k, t )  . ~ ( p ,  t’)) = (2nk2)-’ E ( k ,  t )  

6(k+p) O(k,  t ,  t ’ )  = (O(k, t )  O(p, t ’ ) )  = ( 4 ~ r k ’ ) - ~  F ( k ,  t )  

if t = t ’ .  

if t = t ‘ .  

I n  (2.5) and (2.6) the wavenumber integral d p d q  is over all ( p ,  q )  for which ( k ,  p ,  q)  
can form a triangle, and (x, y ,  z )  are cosines of the interior angles opposite ( k ,  p ,  q ) .  
Also, u(k, t )  is the spectral transform of u(x, t ) ,  and S(X) is the three-dimensional Dirac 
&function. The functions g:, * ( k ,  t ,  t ’ )  satisfy 

-+ V k 2  gE(k, t ,  t ’ )  = 0, 
C t  ) 

-+Kk2 g ; ( k ,  t ,  t’)  = 0, t’ < t ( i t  1 
(2.9) 

(2.10) 

g; ,  d k ,  t ,  t )  = 1 .  

The go are Green functions for pure viscous (or conductive) decay. The superscript 
is introduced for subsequent convenience. We shall soon introduce the unsuperscripted 
g to refer to  the infinitesimal response function. I n  the QN approximation, U ( k ,  t ,  t ’ )  
and O(k, t ,  t ’ )  are 

U ( k ,  t ,  t ’ )  = g;(k,  t ,  t ’ )  U ( k ,  t’ ,  t ’ ) ,  

O(k,  t ,  t ’ )  = g#, t ,  t ’ )  O(k,  t ’ ,  t ’ ) .  

(2.11) 

(2.12) 

We have written these equations in a form convenient for comparison with the 
equivalent DIA or abridged Lagrangian-history UIA (ALH) equations (see e.g. 
Kraichnan 1965). Thus to obtain the U1A we need only to replace (2.9) and (2.10) 
with more general expressions and introduce equations of motion for U ( k ,  t ,  t ‘ )  and 
O(k, t ,  t ’ )  in place of (2.11) and (2.12). We shall not record them here; they may be 
found in Newman & Herring (1979). We note here only the DIA structure for the 
relaxation times D;,, and Dip,. The D i p ,  for the ALH has set to unity all relaxation 
factors referencing k and p ,  a condition traceable to the fact that 8 is constant along 
Lagrangian trajectories. Of course, for ALH the ds integrals in (2.7) and (2.8) are 
Lagrangian historical integrals, in contrast to the Eulerian ones of (2.7) and (2.8). 

Let us return to our discussion of the QN approximation. We recall that  some time 
ago Ogura (1962) and O’Brien & Francis (1962) showed that even for rather small 
Reynolds number Rh the initial-value problems based on QE failed to maintain 
positive-spectra E ( k ,  t )  and F ( k ,  t ) .  Later Orszag (1970) pointed out that  only a small 
change was needed to assure again positivity of spectra: change U ( k ,  t ‘ ,  t ‘ )  and 
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O(k, t’, t’) in (2.11) and (2.12) to U(k, t ,  t )  and O(k,  t ,  t )  respectively. The resulting 
equations, called the quasinormal Markovian (QNM) equations by Orszag because 
they may be shown to result from a Markovian model of the nonlinearity. They 
may serve as a zeroth-order systematic perturbation procedure in the sense of 
Phythian (1969) and Kraichnan (1971). Tatsumi, Kida & Mizushima (1978) derived 
this procedure from the multiple-timescale analysis. With the Markovian changes, 
we may dispense with the historical integrals in (2.7) and (2.8) and write 

dDv 
dt 

= 1 - ( U P  + up2 + uq2) D&,, 

0 
dh = 1 - ( Kk2 + Kp2 + up2) Dip,. 

dt 

(2.13 a )  

(2.13 b )  

The QNM theory is still not correct in the inertial range since, as noted by Orszag 
(1974), its inertial range is kP2 instead of k-: (for a more complete discussion of this 
point see also Frisch, Lesieur & Schertzer 1980). Further (as noted by Frisch et al. 
1980), for smooth initial data the skewness ( (  6Ju/ ( & / & ) 2 ) z  becomes singular 
in a finite time as u + O ,  an unrealistic dynamical feature. The inertial range error 
noted above results from taking triple-moments relaxation times (i.e. DIPq and Dip,), 
as determined entirely by molecular dissipation, through (2.9) and (2.10). Roughly 
speaking, we may correct for this by augmenting molecular dissipation in these 
equations by an appropriate eddy dissipation. Thus we replace (2.9) and (2.10) by 

($+Klra+X’p, 1 gs( lc , t , t ’ )  = 0. 

(2.9’) 

(2.10‘) 

Physically, we expect ,uk to measure the effects of strain due to scales larger than 
k-l on mode k. Thus, a possible choice for ,uk (appropriate a t  large k )  is (Pouquet, 
Lesieur & Andre 1975) 

pi  = jok P2 dP EbO, 4. (2.14) 

In  (2.9’) and (2.10’), and X’ are arbitrary constants whose values must be determined 
through either an appeal to experiment or a comparison with more secure theoretical 
concepts. At this stage, we should note that our changes induced by including the 
pk in the g-equations have fundamentally altered the interpretation of U(E, t, t‘) and 
O(k ,  t ,  t‘): they are now insensitive to large-scale translation, contrary to Eulerian 
non-simultaneous time covariances. For the latter, a new equation must be intro- 
duced; an analysis via a Langevin model (Kraichnan 1971) suggests 

where the subscript E denotes Eulerian. 

determined by 
Our equations to determine E ( k ,  t )  and F(E, t )  are now (2.5) and (2.6) with the Ds 

(2.7’) 

(2.8‘) 
dDB 

dt k p q  = 1 - [ W E 2  + p 2 )  + uq2 + X’(/Lk + p p )  + X”,] LIE,,, 
A” = X. 
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We have eliminated the gs after using (2.9‘), (2.10‘) and the Markovian versions of 
(2.11) and (2.12). The parameter 2‘‘ (at  present = A )  has been introduced into (2.8’) 
for future development. 

The above set is called the eddy-damped quasinormal Markovian (EDQNM) 
approximation by Orszag (1974). It possesses the pleasing properties of spectral 
positivity, Kolmogorov inertial ranges, energy equipartition for inviscid flows and 
computational ease. We shall soon show that they also satisfy (1.2). Note, however, 
that the choices (2.7’) and (2.8’) are by no means unique with respect to the above 
virtues: any positive set [BXpq and Dip,, symmetric in ( p ,  k ) ]  will yield all these 
properties except the Kolmogorov range. Given the large-k form of the (2.14), which 
assures the latter property, this leaves six (instead of two) arbitrary constants, i.e. 
six quantities like the lambdas. We have been guided in limiting this choice by 
comparison with perturbation theories and other general principles. For example, we 
have taken all the lambda multipliers of the invcrsc timescales (pk, ,up, ,uq) in (2.7’) 
to be equal to the same value A. This is justified only if we assert a kind of 
fluctuation-dissipation theorem for the ‘Lagrangian ’ U(k, t ,  t’) and g(k, t ,  t’) entering 
our Markovianized version of (2.7). The same remark applies also to the fact that 
the same multiplier is used for ,uk and ,up in (2.8’). Finally, we have taken the same 
scale factor for ,uq in (2.8’) as in (2.7’); this is suggested by comparing (2.7) with (2.8). 
We shall shortly suggest that  the cogency for this choice is not compelling. 

Perhaps the best way to state the case for our present choice for the xs is to say 
that i t  results from a comparison of EDQNM with DIA for a particular problem for 
which DIA is thought to  be accurate, the problem of relaxation of small departures 
from absolute equilibrium in the interaction of modes confined to a thin shell, a 
procedure used by Kraichnan (1971) in his derivation of the TFM. This procedure 
could also be used to determine the values of and A’, but we postpone this 
determination until the next section. 

Another more heuristic and perhaps cleaner route to obtain the EDQNM is as 
follows. First, record the hierarchy of (simultaneous time) cumulant equations for 
[u(k, t ) ,  6(k, t ) ] .  The resulting equation of motion for the third cumulants contains 
fourth eumulants whose role is to damp the former, thereby providing a mechanism 
for them to remain properly bounded. The EDQNM may be obtained by simply 
replacing the fourth cumulants as they occur in the equation of motion for the third 
cumulants by an appropriate ,u times the third cumulant. The argument is due to 
Orszag (1974). The ,us are unspecified, positive numbers, and arguments similar to 
those already made must be invoked for their determination. Following this line 
of reasoning leaves the parameter 1‘‘ undetermined in (2.8’). As we shall see, this 
added flexibility may be useful. 

2.2. The test-$eld model ( T F M )  
The TFM has the same spectral-evolution equations (2.5) and (2.6) but a somewhat 
more elaborate set to determine DKpq and D;,,. We shall discuss this procedure 
briefly, since it has adequate exposition already (Kraichnan 1971; Herring & 
Kraichnan 1972; Sulem, Lesieur & Frisch 1975; Newman & Herring 1979). The basic 
idea is to determine the buildup time for triple correlations (i.e. the BEpq) as 
proportional to the time required for a convected (compressible) test field w to be 
distorted by straining through the exchange of excitation between its compressive 
and solenoidal components. It therefore requires two relaxation frequencies, one for 
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the solenoidal component [ys(k)] and one for the compressive component y C ( k ) .  The 
TFM equation for DKpq is 

(2.15) 

where 
(2.16) 

(2.17) 

The TFM requires two timescales Dip* and DEpq. It has additionally a more 
physically motivated historical time history in which the relaxation frequencies (ys 
and 7") evolve according to their own intrinsic timescales DEpq, DFkq,. Kraichnan 
(1971) proposed that t'he scalar memory times be taken from yc(k) .  This is equivalent 
to taking scalar memory times from the compressive part of a test field w, where w 
is advected by V, and possibly damped by molecular processes. If w is damped by 
viscosity, the scalar relaxation rate is yc. If w is damped by conductivity - as would 
seem more logical - then its scalar relaxation rate f c  should satisfy an equation like 
(2.15), except that the dissipative process is K instead of v, We then have for Dfpq 

d 
[ d l + K ( " 2 + " 2 ) + ~ ~ 2 + y ~ l r " C ( ~ ) + r " c ( p ) l + ~ ~ r " ~ ( q ) ] ~ ~ p *  = 1 ,  (2.19) 

where g i  and g$ are new scale factors analogous to x' and 2'' for the EDQNM. Here 

(2.16') 

(2.17') 

(2.18') 
[ ~ + K ( k 2 + P ~ ) + I ' y 2 + r " ' ( e ) + r " S ( p ) + . , " q ) ] ~ E ~ ,  d = 1 .  

I n  Newman & Herring (1979) the choice for scalar relaxation times was 
[ V c ,  T"] = [yc, ys] and g i  = 1 .  The present choice seems more logical, especially if the 
Prandtl number is quite large. Unfortunately, it is also more complicated to 
implement, although we shall propose accurate abridgements to offset this compli- 
cation. Equations (2.15)-(2.19), together with (2.5) and (2.6), complete the TFM set 
for E ( k ,  t )  and F(k ,  t ) .  

2.3. Formal similarities and differences in the methods 

Before discussing practical numerical distinctions between the EDQNM and TFM, 
we point out certain formal differences and similarities that are assessable without 
numerical computation. At long times and at large Reynolds numbers, we may 
approximately evaluate the Ds by putting to zero d in (2.7'), (2.8'), (2.18) and (2.19). 
For the TFM we are thus led to a pair of integral equations for y s ( k )  and yc(k) in place 
of (2.16)-(2.18). For orientation, we may solve this set approximately by noting that 
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the factor UfPq under the d p  dg integrals in (2.16) varies less rapidly than the 
remaining factors and may then be evaluated a t  a suitable wavenumber p(k,  q )  and 
removed from the d p  integration. In  this approximation we find 
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(2.20) 

where 

(a2-  1)* In ___- (1+x2)-1, a = 2x(l+x2)-1, 
I1 - 4  

D(k, p) = [ y S ( k )  + y S ( q )  + 2yS($7) + 1, ( k 2 + p 2 +  971-1. 

At large k the appropriate value for D is [3qs(k)  + 2 ~ k ~ I - l .  We may approximate the 
integral in (2.14) by noting that J(x) is relatively flat for x 5 1, after which it 
decreases rapidly. This suggests an approximation based on taking J(x) to be a step 
of height J ( 0 )  = g, x 5 1 .  Bearing in mind that E ( k )  - k-f  is the anticipated 
approximate application then yields 

ys(lc) [q(k) + gVk21= h rg2  j>q q 2 q p )  . . . , (2.21) 

where 
r = Es," J(x) xbdx z 1.7793. 

Thus at  large t and inertial range k we have rough equivalence between the TFM and 
EDQNM, provided that we take 

From (2.21), for k in the dissipation range, f ( k )  + 0, while p ( k )  according to (2.14) 
does not. At small k ,  

= 0.39779. 

+ (rS(p) +vc(q))-l and (2.20) reduces to 

(2.22) 

This low-k behaviour of r S ( k )  is quite similar to  that of the DIA. If we parametrize 
the latter's Green functions exponent,ially (thereby obtaining an extended Edwards' 
(1964) theory; see Herring & Kraichnan (1972)), we obtain, instead of (2.16), 

1 d In DD1(k, q,  p) 
d In q 

(2.23) 

where P ( k )  here serves the same role for DI as the y S ( k )  for TFM and 

DD1(k,p,q) = luD1(p)+pD1(4)1-'- 

Either (2.22) or (2.23) must now be solved as an integral equation for f ( k )  (or p ( k ) ) .  
If E,(k) + kn a s k  -+ 0 and n > 1 ,  y S ( k )  + k2 as k + 0,  and similarly for ,L(k). Assuming 
this form in (2.23) to evaluate d In BD1/d In q then gives 

(2.24) 

Thus, in the limit k -+ 0 forcing agreement between DIA and TFM implies 

g; = ;. (2.25a) 

A similar calculation for the scalar field yields 

g; = 2/+gg,'. (2.25 b )  



8 p c t r u l  closures uppLied to passive scalar diffusion 419 

These comparisons with the DIA must be viewed with some scepticism because its 
exponential parametcrization is somewhat suspect. 

The EDQKM behaviour a t  small k ,  as stated by (2.14), does not have the same 
non-local structure as (2.22). The latter is not only obtained by the DIA, but is also 
supported by renormalization-group (RSG) calculations (e.g. see Foster, Nelson & 
Stephen 1977; E'ournier & Frisch 1978). Hcnce it is probably the more plausible of 
the two a t  k - 0. This discussion suggests modifying (2.14) to account for the more 
satisfacatory small-k behaviour. A plausible approach toward remedying this defect 
in the EDQNM is suggested by an examination of (2.20). Kote first that 
J(z)  = zP2J(1/z), so that if J ( x )  = CeJnxn(x < 1) 

(2.20') 

Recalling that D - + [ 3 y s ( k )  +2vk2]- l  for k -+ 00, and D + [3ys(q) + 2vq2)-l for k + 0 
t>hen suggests, in connection with (2.20') above, that 

(2.14') 

In  using (2.14'), it would seem plausible to evaluate the last integral by approxi- 
mating 

p ( k )  z ak2, 
where 

a2 = /I2 

provided E ( k )  +kn  ( n  > 1) as k + 0. 

3. Discussion of prediction of models 
3.1. Qualitative prediction of EDQNM and T F B  

This section reviews briefly certain qualitative predictions shared by EDQNM and 
TFM : (i) the nature of the large-scale (low-wavenumber) transfer and its implication 
for eddy viscosity and conductivity, and (ii) the prediction of theory a t  large 
Eeynolds numbers over a range of Prandtl numbers. These issues have been discussed 
in some detail elsewhere and we simply collect them here for ready access later. 

At small k we may develop the right-hand sides of ( 2 . 5 )  and (2.6) (which we denote 
as T, and To respectively) in a Taylor series in k / p .  There result (Kraichnan 1976; 
Lesieur & Schertzer 1978) 

00 

Tv(k)  = Ek4 s qP2 dq E2(q)  Dgaq- V,ddy k2E(k)  + . . . , (3.1) 

where 

(3.4) 

The form (3.3) differs from that derived by Kraichnan (1976) by a partial integration. 
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We recall that for long times (near stationarity) the EDQNM and TFM equations for 
the relaxation times Dv and Do are 

(3.5 TFM) 

(3.5 EDQNM) 

The viscous-conductive contribution to (3 .5)  is here omitted for brevity. We evaluate 
the as-yet arbitrary constants in (3.5) in $3.2. Equations (3.1) and (3.2) satisfy (1.2),  
which, as observed earlier, is essential for obtaining the proper decay laws for total 
energy and temperature variance. Further, (3.3) and (3.4) readily give an estimate 
for a kind of eddy Prandtl number (Larcheveque et al. 1980): 

(3.6) 1. ( 1 - 5 ;  dq E,(q) D"(q) 

qE(q) dDV/dq A' + A" p r e  Y,dd~- - ~ 

Keddy 5A 

We have written the eddy Prandtl number Pre for the EDQNM and have abbreviated 
DE,, by L)"(q). The equivalent prescription for the TFM is omitted for brevity. 

The significance of (3.6) for the real-flow context is not at first transparent, since 
we are dealing here with energy spectra ( E  and F ) ,  and eddy-viscosity concepts are 
usually introduced for amplitudes (v, 8). The conditions under which (3.6) appl' ies are 
revealed by considering an  initial-value problem v(x, 0) = v,(x) + Su, 6 = 6,+ SO, 
where the background fields (v,, 6,) are concentrated a t  very small scales compared 
with ( S V ,  SO). Then, if the statistics of (u, 0) are isotropic, the spectra of (Sv, 66) are 
dissipated by 2veddy k2 and 2Ke,,, k2 respectively. 

Lesieur & Chollet (1980) have considered the case in which the background B(k)  
is zero (for k less than some given wavenumber k,) and a continuous k-s spectrum 
for k 2 k,. In this Gase, (3.6) may be integrated by parts to give 

This estimate would be increased by a more realistic assumption that the spectrum 
exterior to k = 0 is continuous, instead of increasing stepwise a t  k 2 k,. For example, 
taking 

and 
E(k)  = S(k)  + E'(k) ,  E ' ( k )  = kn ( k  5 k,), = (ko/k)-Qkon ( k  2 k,)? 

D"(k) = k P  ( k  5 k , ) ,  = kPb ( k  2 k o ) ,  

we find that (3.7) should be multiplied by r', where 

(3.8) 

If we further take a = 2, b = f ,  as seems indicated by (2.20), we find the above factor 
ranges from 8 (for n = 1 )  to f (for n = 00). 
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At very large Prandtl number, the equation for the scalar spectrum reduces to 
(Kraichnan 1968; Newman & Herring 1979) 

where 

($+2Kk2)F(k) = A-(k--3)kF(k). clk d 
dk dk 

q2 dq E(q)  
Fx'p(k) + X"p(q) + vq2' 

(3.9) 

(3.10) 

Equation (3.9) is derived by assuming that k, = (e/v3)4 < k. Again, only the EDQNM 
formula in the form appropriate for t -+ co is recorded for brevity. The inertial range 
for (3.9) is 

F(k)  = N(v/F)~  Cgk-', (3.11) 

where the Batchelor constant C, is 

(3.12) 

and N is the rate of molecular dissipation of the scalar variance. 

of Batchelor, Howells & Townsend (1959) : 
At very small Prandtl number our procedures collapse into the quasinormal results 

NE( k )  
3k3k4 

F ( k )  = - (3.13) 

In  this case the F ( k )  spectrum is entirely diffusive. We remark that for two-dimensional 
turbulence the analogue to (3.13) is F ( k )  - k7. See Lesieur, Sommeria & Holloway 
(1981) for further discussion. 

3.2. Determination of empirical constants 

The constants (gv, go, go)  for TFM or (1, A', 1") for EDQNM (see (3.5) above) must 
be fixed through either a comparison of theory to experiment or a comparison of the 
present phenomenological theory to a method free of arbitrariness. We recall in this 
connection that the original presentation of the TFM (Kraichnan 1971) identified g, 
by requiring that it give results identical to  the DIA for perturbations from absolute 
equilibrium for the problem of interacting modes in a thin spherical shell. The result 
was 

gv = 1.064. (3.14) 

The same procedure applied to the scalar problem gives 

4g;+g; = 3.93. (3.15) 

The method determines only the total relaxation factor D&,, and hence cannot be 
used to discriminate between go and go. If we construct the TFM analogous to  the 
DIA, then, as noted in $2, go = 1 and g$ = 0.7324, whereas following the LHDI 
analogue gives go = 0, @ = 3.93. We will return to a comparison of these results to  
observations. 

We now discuss methods of determining these constants by appealing to large- 
Reynolds-number experiments. I n  this connection it should be noted that, if both 
energy and scalar variance are inertial, differences between TFM and EDQNM are 
purely a matter of adjusting scaling constants. We therefore discuss only the simpler 
EDQNM theory and state a t  the end o f  our discussion the relation between the 
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FIGURE- 1.  EDQNM functional relationship x’ =f(x”) necessary for EDQNM to yield a 
C, ( A ’ ,  A” )  = 0667. Here C, is the Oboukhov-Corrsin constant. Underlying calculations according 
to Quarini (1976). 

(A, x‘, x”) and (9 ,  GO, &). We shall assume that the kinetic-energy and scalar-variance 
spectra are given by 

B(k)  = C K O k d ,  C K  = 1.4, (3.16) 

F ( k )  = Ce N / d  k-!, Ce = 0.667, (3.17) 

respectively. These represent rather well the inertial-range measurements in air of 
Champagne et al. (1977); how well a theory that approaches (3.16), (3.17) asymp- 
totically at B,, + co does at finite €iA will be discussed in $4. Andre & Lesieur (1977) 
have shown that for the EDQNM (3.16) is asymptotically matched by the choice 

X = 0.360, (3.18) 

which is fairly good agreement with our crude estimate (2.21). For the scalar field 
we need to determine (A’, x”), so a constraint in addition to (3.17) is needed. A possible 
choice is the Batchelor constant C, (see (3.11)) for Pr 7 co, but the choice of this 
constraint may be unwise because of the large scatter in the large-& inertial-range 
observations. Another useful constraint is the eddy Prandtl number Pre (see (3.7)) 
for which experiments (see E’ulachier 8: Dumas 1976) give 

(0.6 2 Z’rc 2 0.8). (3.19) 

The question of interest is, given CK = 1.4 and Ce = 0.66, and to (3.7) for Pre, what 
value of x‘/x“ gives Pre within the experimentally prescribed bounds (3.19) 2 

The calculations necessary to answer this question have been performed by Quarini 
(1976). Figure 1 shows the relationship x’ = f ( x ” )  implied byCe(X’, A”) = 0.667. Figure 
2 gives Pre(X’/X”) (as given by (3.7)) as a function of x’/x“, as deduced from Quarini’s 
calculations. The value of Pre here subject to the uncertainty noted in the discussion 
just preceding (3.8). Except for A’/;\’’ + 0, the value of Prc is rather insensitive to 
x‘/x”. If I’re as given by (3.7) is accurate, it would appear that  2‘ = 0 is the best choice. 
This would fit the LHDI analogy, but would leave to be explained why the advective 
relaxation time for the scalar = 0.77 is much less than that for the velocity field 
(kl = 2.77). Following the LHDI analogy would lead to the conclusion that they 
were the same. 
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Pr 
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FIGURE 2. Eddy Prandtl number Pre as a function of x'/x",  where x' and x" are scaling parameters 
of EDQNM (see (2.8'), (3.5') and (3.20)). Constraints C, = 1.4 and C, = 066 (i.e. values of 
Kolmogorov's and the Oboukhov-Corrsin constants) have been imposed. (3.7) is used for Pre. 

Method s v  sb s"t 
k + 0 comparison with DIA 44 4% 1 
Shell comparison with DIA 1 4364 07324 1 
Comparison with experiment 1.06 0.5 (DIA) 1 (DIA) 

0 0  (ALH) 3.6 1 (ALH ) 

TABLE 1 

Finally, we state the correspondence between the EDQNM and TFM parameters : 

29; = X/X, (3.20) 

(3.21) - 2  - A" 2 
g6- / 
gv = 2.77x. (3.22) 

Possible assignments of (gv, g i ,  g;) according to various estimates described in this 
section a,re summarized in table 1. 

4. Some numerical comparisons 
4.1. Large-Reynolds-number results 

We examine first predictions of the theories for large-Reynolds-number and large- 
PBclet-number free decay. The initial spectra are 

(4.1) 

Here, Y = 0001, Pr = 0.725 (air), and the computational wavenumber domain is 
(0.0001,200). The values of (a ,  k,) are (2,0.005). Such initial data yield an init,ial 
RA M 2500, which is typical of planetary boundary turbulence. A set of 40 exponen- 
tially spaced knots, in conjunction with B-splines (used collocatively), represented 
the decay of E ( k ,  t )  and F ( k ,  t )  on the interpolation interval k ,  to an accuracy of better 

E ( k )  = i F ( k )  = ak4(ko+k)-Y 
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FIQURE 3. Compensated spectra a = $ , ( k ) k k f  and /3 = &(k)  d N - l  (see (2.3) and (2.4)) as functions 
of k / k , ,  k,  = (e /v3) i .  Points are data of Champagne et al. (1977). Tyo theoretical curves are shown: 
-, TFM (g = 1.08, g$ = 0.5, go = 1 ) ;  ---, EDQNM (A = 0.36, A’ = 0, A’’ = 3.61x). 

than - 1 yo, as judged by overall total energy conservation. The large-k range of E and 
F quickly evolves into approximate self-similar shapes, and we show in figure 3 a‘ 
and /3‘ plots (also called compensated spectral plots), which are a = $,(k) k i d  and 
/3 = #@(k) k8dN-l (see (2.3) and (2.4)) respectively. The points are the data of 
Champagne et al. (1977). The decay time a t  which the curves are shown ( t  x 300 
large-eddy circulation time L(u2)-3, where L is the integral scale) is sufficiently long 
for the range klk ,  > to  have become completely self-similar. Here k, = (e /v3)! .  
At smaller k,  this is insufficient time for the development of self-similarity ; indeed, 
as noted by Schertzer (1980), for initial conditions (4.1) full self-similarity over all 
k is not expected. Nonetheless, k, scaling does appear to render the large-k range 
(inertial plus dissipation) self-similar. Both $, and $o characteristically exceed the 
k-i law until the beginning of the dissipation range, where a transitional ‘bump’ 
appears as k enters the dissipation range. The transitional ‘bumps’ are much more 
pronounced for the (three-dimensional) energy spectra E and F.  This energy ( E )  bump 
has already been noticed by Andre & Lesieur (1977). 

The dynamical reason for the spectral bumps may be traced - in the theory - to 
the special role of the eddy-viscosity (conductivity) terms. The transfer terms of (2 .5)  
and (2.6) may be split into a ‘local’ part (corresponding to triad interactions such 
that the ratio of any two wavenumbers of the triad should be larger than a given 
‘ non-localness ’ parameter S) and a non-local part corresponding to elongated triads. 
Among the latter, non-local triads such that k 6 p N q give rise to a transfer T, (or 
T,) obtained from (3.1), (3.2), (3.3), and (3.4) by changing the lower bound 0 of the 
integrals to k/6. We may identify an eddy viscosity and conductivity v,(k, k/S) and 
K,(k, k/S) in connection with this lower-bound replacement in (3.3) and (3.4). Then 
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such an eddy viscosity or conductivity begins to decrease abruptly as k exceeds Sk,. 
The corresponding fluxes 

constant and positive for k < 6ks, tend to zero for k > 6k,. It is reasonable to expect 
that the local fluxes keep their constant value up to k,. In  the range (Sk, ,  k s ) ,  the 
Tv(k) transfer, being positive, generates a relative excess of energy, which causes 
‘erosion’ of the lower part of the k-8 inertial range through the non-local eddy-viscous 
interactions. We have checked numerically that the energy bump disappears for a 
calculation that excludes these non-local interactions (6 being taken equal to 0.2). The 
scalar field may be analysed in the same way: excluding the non-local eddy-diffusive 
interactions gready reduces the height of the bump but cannot succeed in making 
it disappear completely, for any value of 8. Consequently, the scalar bump has its 
origin in the very non-local interaction discussed above and in others, among which 
is the viscous-convective k-l proposal of Hill (1978). The latter requires fewer non-local 
diffusion terms. Comparable bumps in the energy and scalar spectra were observed 
in the experiment of Mestayer (1980) at RA = 600. 

We return to our discussion of the differences between TFM and EDQNM. 
Consider first the TFM (g, = 1.06, g$ = 0.5, g l  = l ) ,  and EDQNM (A = 0.36, x’ = 0, 
A’‘ = 3.61). We examine the velocity-field predictions shown in figure 3 (a) as the solid 
and dashed lines respectively. The EDQNM predicts a slightly more enhanced 
spectral bump for $v(k), with a slightly smaller spectrum in the region k 10-3kk, 
and a slightly more positive slope leading into the transition region. I n  terms of a 
comparison with the data, little real difference appears between the two. The TFM 
and EDQNM difference that does occur is simply related to their different eddy- 
damping rates. A t  very large k ,  (2.14) gives p ( k )  -7 ( ~ / 2 ~ ) 4 ,  while q S ( k )  + 0, according 
to (2.16) and (2.17). Recalling that the larger damping rate suppresses energy transfer 
more, we are led to expect the TFM to transfer energy more efficiently and hence 
have a smaller effective Kolmogorov constant. We also show p ( k ) / q s ( k )  for the present 
run in figure 4. The ordinate scale is at the right. 

It is difficult to  judge on purely phenomenological grounds which of the above 
k --f 00 behaviours is more correct. It seems quite plausible that the limitation on the 
buildup of triple moments should be proportional to the r.m.s. large-scale strain ( e / v ) i .  
This is not scale-dependent. Such considerations tend to lend credibility to the 
EDQXM. On the other hand, we would obtain a formula closely similar to the TFM 
prescription from LHDIA or UIA, whose analytic structure may seem more 
trustworthy. 

The comparison of theory and the data of Champagne et al. (1977) for the 
temperature field is shown in figure 3 ( b ) .  Shown are only those calculations using those 
TFM and EDQNM coefficients that  best match the data (gt = 1-17,  g$ = 0.5, g$ = 1) 
for TFM and (A = 0.36, 2’ = 0, A’’ = 3.61) for EDQNM. The curves are quite similar, 
with EDQNM yielding a slightly larger value of the constant /3. This difference 
apparently simply reflects the fact that the overall effective eddy-damping rate is 
larger for EDQNM than for the TFM (0*36p(q)) as compared with 

0 ~ 5 r m )  + Y Y P )  + TS(Q)I> 

where we recall tha’ f ( k )  % 2 q s ( k ) .  Crudely speaking, if we argue that the interactions 
are effectively local ( k  z p % q ) ,  we would expect the ratio of EDQNM to TFM to 
be (3*61/3)g % 1.13, not far different from that indicated in figure 3 ( b ) .  

We have proposed in $ 3  that the parameters of either theory could be identified 
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Parameters are the same as in figure 2. Also shown is ratio of relaxation frequency for th r  two 
theories, , u ( k ) / y s ( k )  (ordinate scale to  the right). For these runs Ic, = 185.6 

FIGURE 4. Comparison of' energy spectra E(k)  and P ( k )  for TPM (-) and EUQNM (.  . .). 
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FIGURE 5 .  Compensated spectra for TFM (g = 1.08, g$ = 07324, go = 1 )  and (g = 1-07, g i  = 09128. 
gs = 1 ), as compared with TFM with g-paramet,ers of figure 3. The first according t.0 'shell '-absolute 

table 1 .  Initial spectra for this run are [Ek), F ( k ) ]  = 2nk2/(0.01 + k ) + ; ( R , ,  P,,) = (2000,1550) at 
t = 2.6 L,(O)/u(O), which is the time shown. 

equilibrium matching (---), the second matches TFM to k-3- 0 limit of DIA ( .  . . . . . .  . ) .  See 
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by comparing results with that of the DIA at  k --* 0,  where the latter is expected to 
be a good approximation. The choice obtained in this way for (go, go) is given in 
table 1 .  Figure 5 compares the TFM-EDQNN results utilizing this approach to that 
given in figure 3. The latter method gives substantially larger values for either theory. 
The choice of parameters for the velocity field (g or 2) already matchcs the 
Champagne et al. (1977) data quite well (a  = 0.25). With regard to the scalar data. 
other data (namely those of Williams 1974) suggest a somewhat larger constant 
(p = 0.6) instead of p = 0.40, as found here. 

4.2. Comparison to moderate-Reynolds-number experimental spectra 

Here and in $4.3 we discuss two aspects of modcrate-Reynolds-number flows. ( i )  the 
comparison of experimental energy-transfer spectra with theory, and ( i i )  the question 
of proper equations relating energy and scalar-variance dissipation to an appropriate 
scalar lengthscale. As noted earlier both TPM and EUQXM yield essentially the same 
results a t  large k,  but the more comprehensive RNG analysis suggests a TFM-based 
(really DIA) theory to be more satisfactory a t  small k. We shall accordingly employ 
the TFM (gt = 1.17,  g i  = 0.5, gd = 1 ) .  However, as observed in $3.  a generalization 
of EDQNM can be made, which more properly treats the small-k range. 

The most direct test of closure, such as that described here, would appear to be 
comparison with wind-tunnel data, which are assured to be reasonably isotropic and 
homogeneous. Such a comparison meets immediately the problem of the statistics 
of the initial data. The closure assumes initial Gaussian data, a condition certainly 
not realized by laboratory experiments. Indeed, any serious consideration of the 
problem of what initial values of the moments represent conditions as jets merge 
just exterior to a honeycomb seems a formidable task. As an alternative, one 
could consider an initial-value problem, in which the energy-transfer spectrum 
function is given laboratory values, and assume higher-order cumulants to be 
irrelevant. The validity of a closure then would be judged by how well the evolved 
spectra matched the experiment decay. Such a procedure has been followed by several 
authors (Deisslcr 1979; Cambon et al. 1980). 

It is difficult to know how sensitive results obtained this way are to the underlying 
dynamics of the closure. Given ?'(k, t = 0), it could be that almost any reasonable 
extrapolation of the initial data for times attainable in the wind tunnel would yield 
satisfactory results. It is instructive in this regard to consider the calculation by 
Deissler (1979), who employs an iterative exponential series expansion of the 
Savier-Stokes equations. His results appear as good in many respects as any 
obtainable by the much more elaborate closure methods. 

In  view of these observations, we confine our attention to the following simple 
problem. Suppose it is known experimentally that (vz) - t F .  Then generalizing the 
arguments invoked by Corrsin (1951) we may relate s and n by a simple use of the 
cnergy-conservation equation. The result is n z 2(s+ 1)/(s+3),  where at  small 
k ,  E ( k )  + k" (Lesieur & Schertzer 1978). A reasonable test of a closure would then 
be to forecast T(k,  t )  (starting from T(k,  0) = 0) and some convenient E ( k ,  0) (with 
E(k ,  0) -ks, k --f 0). The calculation should start a t  sufficiently large R, so that the 
experimental value Rh(t) is achieved after transients in E ( k ,  t )  have died away. This 
means that E ( k ,  t )  should depend on E ( k ,  0) only to the extent that both behave like 
k" a t  small k .  

Figure 6 shows a cornparison of such a calculation with the experiment of Yeh & 
Van Atta (1973). The experimental data are indicated by the dashed and dot-dashed 
lines and correspond to two ways of reducing the data. The TFM (s = 4) results are 
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FIGITRE 6. Energy-transfer function T,(k) for TFM at R, = 34. , , . . . . . , . , R = 4 ( i .? .  
E(k)+k4, k + 0 ) :  -, s = 1. ---, , data  of Yell & Van Atta (1973). 

E(k ,  T )  

k 

FIGURE 7 .  Kolmogorov-scaled plots of E(k) and F ( k )  for R, x 34, PA x 28 decaying isotropic 
turbulence, with s = s’ = 4. 
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shown as the dotted line. The value R, M 34 is obtained for both theory and 
experiment. Yeh & Van Atta measure n z 1.34, whereas the theoretical calculation 
(at R, M 34) has n = 1.38. The comparison appears satisfactory. Of perhaps more 
significance is the sensitivity of these results to the assumed value of s (=  4). The 
solid line in figure 6 shows the equivalent TFM run with s = 1 (again R, = 34). We 
note the significant shift of T ( k )  toward larger k (particularly in the enezgy-containing 
range). The agreement of the s = 1 calculation and the Yeh-Van Atta experiment 
is clearly less acceptable. 

We stress again that the theoretical spectra are self-similar only over large 
k ,  k k, ( t ) ,  where k ,  is the peak-energy wavenumber. Figure 7 gives E ( k ,  t )  and F ( k ,  t )  
withthe Kolmogorov scaling. We note an approximately Kolmogorov scaling of these 
spectra. We have discussed only the velocity field, but a similar discussion applies 
to the scalar field. 

4.3. Second-order modelling and decay rates at moderate R, 
A question of some importance in turbulence modelling is how to specify equations 
of motion for the dissipation of kinetic energy and scalar variance in terms of 
quantities used by the models, Such information is necessary to close the second-order 
moment equations. A widely used procedure is to assume constant values for the 
tiormalized decay rates for velocity and scalar fields, defined by 

(4.2a) 

(4.2 b )  

and then appeal to experiments, usually free decay, for appropriate values for ($, $@). 
In  this connection, another important useful number is the ratio of velocity and scalar 
timescales : E / €  

(8’2)  / N ’  
r ( t )  = (4.3) 

If E cc t P ,  (P)  cc t P m ,  $ = 2(n+ l ) /n ,  $, = 2(m+ l) /m, r = m/n. 
Warhaft & Lumley (1978) have called attention to the fact that, whereas those 

parameters pertaining to the velocity field are fixed with a fair degree of unanimity 
by free decay experiments, those relating to the scalar are as yet uncertain. They 
have noted that this variability is probably traceable to the fact that  the scalar 
spectrum’s wavenumber centre of gravity (relative to that of E(k ,  t ) )  varies with 
experiment. They propose that r ( t )  should therefore be regarded as a function of 
k , ( t ) /k , ( t ) ,  where k,(t) is (as before) the peak k for E ( k ,  t ) ,  and k ,  is the same for the 
scalar field. They were able to verify experimentally this proposition and obtained 
the functional form r = f ( ke / kv ) .  This was done utilizing a ‘mandoline’, which 
injected the scalar field with controlled k ,  downstream from the source of turbulence. 
A comparison of their data with TFM calculations has also been reported (Larcheveque 
et al. 1980), obtaining reasonable agreement with the experiment. 

Kerr & Nelkin (1980) have proposed a model based on a relation between the 
dispersion of a pair of particles and the decay of scalar variance first introduced by 
Kraichnan (1966) and more recently extended by Larcheveque & Lesieur (1981). 
Their key assumption is that  the scalar variance varies inversely as the cube of the 
pair (r.m.s.) separation length, which, in turn, should be proportional to a scalar 
lengthscale L,(t). 
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As noted by Kerr & Nelkin (1980), their analysis is expected to be valid only 
a t  high Reynolds and PBclet numbers. I n  addition, an identification of particle-pair 
separation and a proper scalar lengthscale must be made. It is not yet clear how well 
their rcwdts should be cxpected to serve as an heuristic explanation of moderatc- 
Reynolds-number experiments such as those of Warhaft & Lumley (1978). 
Antonopolos-Domis (198 1 ) has more recently reported ‘ large-eddy simulations ’ 
(subgrid-scale numerical simulations) that show that r ( t )  (see (4.3)) is will represented 
during decay as linear in the initial microscale ratio h,/h,. This characterization 
of the r(t)-lengthscale dependence would appear less useful for our purposes than 
one utilizing the ratio of integral scales L,/C,, where the Ls are integral scales for 
(v, 0 ) .  This characterization was also suggested by Leslie (private communication 
1980). Roughly speaking, we may identify (k , ,k , )  with (L i l ,  L;I), but the latter really 
seems a more plausible set of physical variables. Antonopolos-Domis does, in fact, 
find for his calculations an approximate linear relationship for r versus ( k o / k v )  (see 
his figure 13), but this relationship has more scatter than r versus [&/A, (initial)]. 

Here, we extend TFM closure results of Larcheveque et al. (1980) to  a wider range 
of ( k H / k v ) t = O ,  and discuss in some detail the physics of the scalar decay as this scale 
parameter varies. I n  so doing, we bring into focus the rtdationship of our results to  
those of Kerr & Nelkin (1980), Sreenivasan et al. (1980), and Antonopolos-Domis 
(1981). Of particular interest is to examine how well the scaling arguments, usually 
deduced a t  R, + 00. hold up at  wind-tunnel R,, where most observations are made. 
Before beginning the numerical discussion, it is worthwhile to  inquire undcr what 
circumstances unique values of E, /k ,  and r (defined by (4.3)) exist independent of 
the initial injection wavenumber k,(O). Following Lesieur & Schertzer (l978), 
Larcheveque et al. (1980) proposed r = (s’+ l) /(s+ I ) ,  where E ( k )  - ? k s ,  and 
F ( k )  + kS , as k +0, and (s, s’)  < 4. Underlying the analysis presented there is the 
assumption that, as t -f 00, k , / k ,  7 1. Our numerical calculations indicate that there 
is indeed a unique k, /k ,  - 1 to which any initial E ( k ) ,  F ( k )  tends. This result may 
sccm a t  first sight somewhat surprising if transfer is entirely local in wavenumber 
space. For example, if k , / k ,  $ 1, and ko is in an indefinite inertial range, then E(kt) 
should, under the assumption of localness, be insensitive to the value of k , ;  hence 
k , /k ,  would remain arbitrarily large. In reality, the non-local k4 transfer of ( 3 . 2 )  in 
this circumstance rapidly transfers F to smaller k where F is initially quitc small. 
The rapidity of this transfer suffices to keep d ( k , / k , ) / d y  < 0 despite the fact that 
Ic ,  - t - p ,  p = 2/(s+ 3). It should benoted that the theoreticalinterpretationof large-m 
experiments is that m(t) is not in reality constant but slowly decreasing from an 
experimentally set and arbitrarily large value to a universal value m % 1. 

Figure 8 gives r ( t )  versus LJL ,  for a variety of initial conditions; initial values 
of k,/k,  and R, are given in the figure. We include both cases in which 0 is injected 
into pre-established turbulence, as well as cases in which ‘u and 8 evolve from Gaussian 
initial data. The range of R, shown is I&lO3. An examination of the details of the 
various calculations shows that the functional relationship r = L,/L, (for R, - 30) 
is relatively insensitive to the initial scalar-injection wavenumber. For example, the 
point ncar L,/L, = 0.2 represents the decay of a scalar injected a t  large scales (‘om- 
pared with the velocity field ((L,/L,) ( t  = 0) % 7+38), a dynamically quite different 
situation from the other cases presented; yet it conforms well to r = /+/Lo. These 
results are consistent with the numerical findings of Antonopolos-Domis (1981) - at  
least those summarized in his figure 13. 

It  is of some interest t o  consider in detail thc case in which the initial k , / k ,  + I .  
Figure 9 shows E(Ic) and P ( k )  for run ( e )  for which L,/L,(f  = 0) = 7.88 (other 
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FIGURE 8 r ( t )  = ( N / ( O ' * ) ) / ( e / E )  versus L,/L,, where Ls denote integral scales for the turbulence 
and scalar fields. Tracks marked by arrow tails (a t  earlier) and tips (at later times of evolution) 
for various runs ( a ,  b ,  c, d )  are shown, as well as the relationship T = 1.63(L,/LO)f (---) Notice that  
case (a )  (a t  large R,) follows the dashed line over its entire course. Values of parameters R,. PA, L,/L, 
at beginning and end of tracks are stated here (8, s') = (4, 4). In addition, t,?, is the difference in 
time (in units of the initial large-scale eddy-circulation time) between Gaussian data  for v of the 
injection of Gaussian 8-fluctuations 

FIGURE 9. F ( k ,  t = 10) (-) and E ( k ,  t = 8.0) ( .  . . . . . . . . )  versus k for initial conditions 
(L,/L,) ( t  = 0) 7.88. Initially E,(k) = k4 exp ( - k ) ,  F ( k )  = k4 exp ( -  10k), K ,  % 30. Vnits are 
arbitrary. 
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parameters of this run are given in figure 9). The dynamics of scalar decay for this 
case appears simply representable as follows. For k < k,( t ) ,  F ( k )  decays by eddy 
diffusivity (the second term in ( 3 . 2 ) ) ;  for k 2 k,, 0 is entrained by u, and the shape 
of F ( k )  becomes strongly similar to E ( k ) .  As time proceeds, k,(t)  decreases, thereby 
entraining progressively more 0 and mixing it to small scales where it is dissipated. 
In this case, F ( k ,  t )  ( k  < k,) stays fixed (except for a slow decay), while E ( k ,  t )  etches 
into it from above. The eddy diffusivity is here well represented by 

Keddy = 146& Li, (4.4) 

a value consistent with Larcheveque et al. (1980) provided that Pre E 0.80. 
F ( k )  for k N k, appears to approach a power law for about a decade beyond k,. 

This feature appears in nearly all our moderate-R, calculations (see especially figure 
7).  Comparison of these runs with those a t  large R, indicates it to be a transitional 
feature located just a decade interior to the dissipation range. Curiously, in this region, 
- d  log F / d  log k x*(l+$) (i.e., a geometric mean between the inertial-convective 
and the viscous-convective ranges). 

The occurrence at R, z 30 and p ,  E 30 of such an ‘anomalous inertial range’ for 
F ( k )  has been noted by Yeh & Van Atta (1973) and by Warhaft & Lumley (1978), 
the latter suggesting that it may be related to excessively high values of the 
temperature fluctuation a t  the heated grid (no such anomaly was found for the 
mandoline or heated-screen data, which were generally lower in PA). Sreenivasan et 
al. (1980), on the other hand, find no such anomalous F ( k )  range. However, their data, 
even for the heated grid, had a somewhat lower value of PA E 20. 

Let us now examine the proposal of Kerr & Nelkin ( 1  980). These authors argue 
that the behaviour of ( O ’ z )  may be deduced from the analysis of the dispersion of 
a pair of particles, with the r.m.s. separation being proportional to the scalar integral 
length. Their analysis depends on two key assumptions (i) (0’2) (t)Lg(t) = constant, 
and (ii) a Richardson‘s law connecting L, and E[L, - ( E , / J J ~ ) ~ ] .  Their equation for E8(t) 
is 

(0’2)  = [ ( A  +Bt)W”’]-%, (4.5) 

where A ,  Bare constants and the decay of E,(t)  - t f n .  First, note that (4.5) is cntirely 
consistent with the scale analysis of EDQNM by Lesieur & Schertzer (1978), provided 
that the assumption k, - k, is not made and provided that 8’ = 2. Briefly, the 
analysis proceeds as follows: ( i )  take E ( k )  - (k/k,)se$k;$ ( k  < k , ) ,  E,(k)  - etk-g 
(k  2 kv) ,  and P ( k )  - ( k / k , ) s ’ N d  ( k  < k,), F ( k )  - Nc-fk-8 ( k  > k , ) ;  (ii) use (3.1) and 
(3.2) to infer the invariance of dk;S-8 and NdksS’ -F  3 ,  and then use these constants 
in the equations E = - E  and (P) = N ,  assuming (s, 8 ‘ )  < 4. This yields 
m = 2(d+ l ) / ( s+3) ,  n = 2(s+ l ) / ( s+3)  and r = (s’+ l)/(s+ I ) ,  as already mentioned 
above, and L, - t2’(s+3), Lo - to. Such a calculation clearly assumes large R, and PA, 
as well as Pr z 1. However, as we have noted, the decay power laws derivable from 
the scale analysis appear to hold down to unexpectedly low R,. It is then of some 
value to  ask for the validity of the analysis of Kerr & Nelkin for wind-tunnel R, ( z 30) 
flows. Figure 10(6) gibes log (0”) versus log &(t) for two runs in which small-scale 
Gaussian @-fields are injected (at t = 11.25, in units of the large-scale circulation 
time (n2)-8 L,) into decaying turbulence ( E ( t )  - t - 1 3 8 ) .  Thc two cases have s = 4 
and s‘ = ( 2 ,  4) respectively. These cases are also considered in figure 8 (for r ( t )  versus 
L,/L,), where initial E ( k )  and forms of the injection F ( k ,  t = 11.25) are given. At long 
times (P)  L$ is constant for s‘ = 2 ,  and EOLi3 for s’ = 4. 

We note the departure from power-law behaviour at short times. Values of 
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FIGURE 10. Lo/c$  .Li versus log Lo (a ) ,  and log (P) versus log Lo ( b ) ,  for two types of initial d a t a ,  
( i )  ---, ( E ( k )  - k4, F ( k )  - k Z ,  k - + O ) ;  (ii) -, ( E ( k )  - k4, F ( k )  - k4. k LO). In ( b )  the  pair of 
numbers in parentheses is time (in units of initial large-scale circulation time) after injection of the 
Gaussian 0-field a t  t = 1125 and the current value of m. At t = 11.25, F ( k )  = k2 exp [-k(L,/8.81)1.  

m(t)  = t P ? / ( P )  as well as t are recorded on the figure. Figure 10(a)  compares 
(&/L,)/(e/L$)i  versus log Lo. We note a confirmation of the proposal of Kerr & Nelkin 
(1980), and an approximate value of Richardson's constant of 0.35 for s' = 2 and 0.27 
for s' = 4. Calculations a t  R, % lo3 suggest that these values will increase by about 
10 yo a t  large R,. It is rather remarkable that the simple scaling analysis should hold 
at  R, = 30; it  is, after all, based on inertial-range formulas, and the spectra E, and 
E, possess only faint suggestions of Ic-5 a t  these small R,. 

Sreenivasa,n et al. ( 1980) have reported rather comprehensive experimental results 
on heated grid and heated screen ( =  mandoline of Warhaft & Lumley 1978) a t  
moderate R, % 30, and PA % 20. They have compared their experimental findings 
with those of Warhaft & Lumley (1978), to other experiments, and to  various 
theoretical models such as those of Corrsin (1964) and Newman, Warhaft & Lumley 
(1977). Our moderatc-R, results touch upon their analysis of experimental data, and 
we briefly comment on this point. 

In  analysing certain of their data, Sreenivasan et al. (1980) use-the results of Corrsin 
(1964) : 

(assuming Pr - 1). In  their analysis of the heated-grid data ( F ( k )  in secular 
equilibrium with E ( k ) ) ,  they use (4.6) to infer a value of L,/L, > 1 (see their figure 6) .  
(Their finding L,/L, > 1 appears a t  variance with the experiments of Yeh & Van Atta 
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(1973) and F'C'arhaft & Lumley (1978).) In  the TFM this value depends somewhat on 
(s, s'), but for all our numerical studies so far L,/ Lo < 1. The analysis underlying their 
discussion here relating r to L,/L, involves the assumption that both R, and PA are 
sufficiently large for appreciable k-4 ranges for both IY, and B,, which is clearly not 
the case for the experimental data analysed. 

As remarked earlier, our moderate-E, results arc consistcnt with r - (L,/L,)I (see 
also figure 8). in agreement with the suggestion of Warhaft & Lumley (1978) and the 
numerical simulations of Antonopolos-Domis (1981) (see figure 8). At much larger 
K, = 1.5 x lo3, we find curve (a) of figure 8, which is well represented by 

r = (1.63f0.001) (L,/L,)i. (4.6') 

Our results thus indicate that the analyses of Corrsin (1964) and Sewman et al. (1977), 
although in agreement with TFM a t  large R,, arc not a t  R, N 30. r - (L,/L0)l is 
consistent with an elementary scale analysis of the equations of motion. Thus 
F - (v2)i/L,, N - ( 0 2 )  (v2):/Lo implies r - L,/L,. We should mention that the 
dcpcndencc of r on L,/L, has also been recently investigated by Kolovandin, Luchko 
& Martynenko (1981), who give a more elaborate argument in favour of r - L,/L,. 
However, if L,/L, 4 1, only a fraction (L,/L,)g of (v ' )  participates in dissipating 
(0''). What our present analysis suggests is that a t  R, - 30 - PA, and for L,/L, not 
too small, the excessive width of F ( k )  as compared with E ( k )  is such as to allow all 
of (v ' )  to participate in the dissipation of F ( k ) .  The value of the coefficient in (4.6) 
should depend, a t  least to a certain extent, on ( s ,  s') [(s, s') = (4, 4)] for (4.6'). Finally, 
we may compare (4.5') with the suggested value of Sreenivasan et al. (1980), 2.1, and 
to that proposed by Newman et al., (1977), 1.82. 

5. Concluding comments and discussion 
The closures described here - TFM and EDQNM - appear to represent in a 

reasonable manner the dynamics of decaying homogeneous turbulence with scalar 
fluctuations. An important dynamical ingredient they possess that other simpler 
procedures frequently omit is the equipartitioning at large scales. This necessarily 
leads to the correct power laws for decay and suggests that  (three-dimensional) 
spectra commencing like k4 have a quasi-universal character. The equipartitioning 
tendency seems vital if one is to model the integral scales correctly. Either mcthod 
(as we have illustrated) will produce plausible scaling laws of decay rates and integral 
scales a t  large Reynolds and PBclet numbers. The closures provide the numbers that 
the more heuristic approaches cannot. Listed among these for the present application 
are the modified Richardson constants, the coefficient relating the ratio of decay rates 
for velocity and scalar fields to the integral scales, and information concerning the 
eddy I'randtl number. All these quantities depend to a certain degree on the slope 
of E ( k )  as k + 0, and the closures quantify the degree of this dependency. The closures 
further seem to represent faithfully the known spectral features of decay well over 
a wide range of Pr and for a range of initial conditions. 

At the same time, neither procedure may be regarded as very satisfactory from 
the perspective of theoretical physics. They require scaling factors that must be 
specified empirically, and have a crude parameterization of the two-time mrrelation 
functions (a simple (mis-)use of the fluetuation-dissipation theorem). The errors 
caused by such a parameterization may be significant in the scalar-dissipation range. 
Herring & Kcrr (1982) have shown that even a t  quite low R, and PA the use of the 
fluctuation-dissipation relation causes a significant inhibition of transfer to large k ,  
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especially for the scalar. The DIA is more satisfactory in this respect. The fluctuation- 
dissipation constraint may be relaxed, but a t  the expense of increasing the compu- 
tational labour (as in the strain-based LHDIA: Kraichnan 1977; Herring & 
Kraichnan 1979), or a t  the expense of introducing many arbitrary coefficients 
(relaxing the symmetry of the D(k, p ,  q ) ) .  

We have noted that the EDQNM may be regarded as an abridgement of the TFM, 
and have suggested modifications of the former (see $2.3), which may improve 
its behaviour a t  small k .  This is important for the computation of quantities such 
as eddy dissipation that are sensitive to the integral-scale region of the spectrum. 
Little difference appears at larger k ,  in the inertial range, and the difference remains 
small in the dissipation range where the different behaviour in p ( k )  and ~ ( k )  becomes 
pronounced (see figure 4). Our conclusions on this point are based on numerical 
studies here and in Larcheveque et al. (1980) ; there could well be cases where the rapid 
redistribution of scales needs non-adiabatic features like those in TFM for their 
accurate description. If such is not the case, i t  would certainly appear that the 
EDQNM, being the simpler procedure, would be the proper tool to employ. However, 
ease of numerical implementation of either procedure is machine-dependent ; on a 
vectorized machine the advantage of the EDQNM in speed of computation may not 
be so decisive, provided the calculation is within core. 

It is a pleasure to record our appreciation to  Drs U. Frisch, G. Holloway and 
R. Kerr for useful and enlightening discussions. We are also grateful to a referee for 
useful critical comments regarding substance and presentation of material. 
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